Distinct Modes of Neuritic Growth in Purkinje Neurons at Different Developmental Stages: Axonal Morphogenesis and Cellular Regulatory Mechanisms
نویسندگان
چکیده
BACKGROUND During development, neurons modify their axon growth mode switching from an elongating phase, in which the main axon stem reaches the target territory through growth cone-driven extension, to an arborising phase, when the terminal arbour is formed to establish synaptic connections. To investigate the relative contribution of cell-autonomous factors and environmental signals in the control of these distinct axon growth patterns, we examined the neuritogenesis of Purkinje neurons in cerebellar cultures prepared at elongating (embryonic day 17) or arborising (postnatal day zero) stages of Purkinje axon maturation. METHODOLOGY/PRINCIPAL FINDINGS When placed in vitro, Purkinje cells of both ages undergo an initial phase of neurite elongation followed by the development of terminal ramifications. Nevertheless, elongation of the main axon stem prevails in embryonic Purkinje axons, and many of these neurons are totally unable to form terminal branches. On the contrary, all postnatal neurites switch to arbour growth within a few days in culture and spread extensive terminal trees. Regardless of their elongating or arborising pattern, defined growth features (e.g. growth rate and tree extension) of embryonic Purkinje axons remain distinct from those of postnatal neurites. Thus, Purkinje neurons of different ages are endowed with intrinsic stage-specific competence for neuritic growth. Such competence, however, can be modified by environmental cues. Indeed, while exposure to the postnatal environment stimulates the growth of embryonic axons without modifying their phenotype, contact-mediated signals derived from granule cells specifically induce arborising growth and modulate the dynamics of neuritic elongation. CONCLUSIONS/SIGNIFICANCE Cultured Purkinje cells recapitulate an intrinsically coded neuritogenic program, involving initial navigation of the axon towards the target field and subsequent expansion of the terminal arborisation. The execution of this program is regulated by environmental signals that modify the growth competence of Purkinje cells, so to adapt their endogenous properties to the different phases of neuritic morphogenesis.
منابع مشابه
Distinct roles for ceramide and glucosylceramide at different stages of neuronal growth.
Sphingolipids (SLs) are important structural and regulatory components of neuronal plasma membranes. Previous studies using fumonisin B1, an inhibitor of the synthesis of ceramide, the precursor of all SLs, demonstrated that ceramide synthesis is required to sustain axonal growth in hippocampal neurons (; ) and dendritic growth in cerebellar Purkinje cells (). We now show that ceramide plays di...
متن کاملGrowth and morphogenesis of an autonomic ganglion. II. Establishment of neuron position.
The developmental events affecting the positioning of neurons were examined in the frog cardiac ganglion. Use of a neuron-specific marker enabled the position of all neurons in the ganglion to be quantified at different developmental stages. Subsets of neurons born at specific times were labeled with 3H-thymidine, and their positions were mapped at different developmental stages. This technique...
متن کاملTransient Developmental Purkinje Cell Axonal Torpedoes in Healthy and Ataxic Mouse Cerebellum
Information is carried out of the cerebellar cortical microcircuit via action potentials propagated along Purkinje cell axons. In several human neurodegenerative diseases, focal axonal swellings on Purkinje cells - known as torpedoes - have been associated with Purkinje cell loss. Interestingly, torpedoes are also reported to appear transiently during development in rat cerebellum. The function...
متن کاملReorganization of Synaptic Connections and Perineuronal Nets in the Deep Cerebellar Nuclei of Purkinje Cell Degeneration Mutant Mice.
The perineuronal net (PN) is a subtype of extracellular matrix appearing as a net-like structure around distinct neurons throughout the whole CNS. PNs surround the soma, proximal dendrites, and the axonal initial segment embedding synaptic terminals on the neuronal surface. Different functions of the PNs are suggested which include support of synaptic stabilization, inhibition of axonal sprouti...
متن کاملExperience-Dependent Plasticity and Modulation of Growth Regulatory Molecules at Central Synapses
Structural remodeling or repair of neural circuits depends on the balance between intrinsic neuronal properties and regulatory cues present in the surrounding microenvironment. These processes are also influenced by experience, but it is still unclear how external stimuli modulate growth-regulatory mechanisms in the central nervous system. We asked whether environmental stimulation promotes neu...
متن کامل